Out of the following statements, how many are true?

- A. Every language in P is computable.
- B. Every computable language is in NP.
- C. Every language in P is in NP.

Which of the following functions from N to N are not $O\left(n^k\right)$ for any natural number k?

Which of the following sets is NOT in Σ_1 ?

A.
$$K_0 = \{\langle x, y \rangle : \varphi_x(y) \downarrow \}$$

B. \mathbb{N}

C. Tot =
$$\{e : \varphi_e \text{ is total}\}$$

D.
$$K = \{e : \varphi_e(e) \downarrow \}$$

Remove

Which of the following statements is FALSE?

- A. Suppose $A \equiv_m B$. Then $A' \equiv_T B'$.
- B. There exists a set $A \subseteq \mathbb{N}$ such that $A \leq_T B$ for all sets $B \subseteq \mathbb{N}$.
- C. For all sets $A \subseteq N$, there exists a set $B \subseteq \mathbb{N}$ such that $A \nleq_T B$.
- D. If $A \equiv_T B$ then $A \equiv_m B$.

Remove

In the Cook-Levin Theorem, which problem is shown to be NP-complete?

How many of the following problems are known to be in P?

Which of the following statements are true?

If P = NP, then which of the following statements are true?

What would you do if someone manages to prove P = NP?

Factor 192659099 in poly-time and flex your math skillz

